RADIATIVE-CONDUCTIVE HEAT TRANSMISSION THROUGH
A MEDIUM WITH A CYLINDRICAL GEOMETRY: PART II

A, A‘. Men' UDC 536.25

" A solution to the linearized equation of radiative—conductive heat transmission through
a cylindrical layer has been found by a numerical method.

In [1] the author has set up and then approximately solved integral equations describing the steady-
state field of a semitranslucent medium contained between coaxial cylinders. The physical model for this
problem was constructed on the basis of heat transmission by conduction and radiation, taking into account
a selectivity of the optical characteristics and a mirror reflection of the radiant heat at the boundary sur-

faces,
Transformation of the Fundamental Equations. The commonly prevailing condition that 19(r): « Ty
leads to a linearized equation of the temperature field: Eq. (5) in [1]. We will rewrite this equation as fol-

lows:
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Fig. 1. Temperature profile of a cylindrical layer #(x)

=T, -T(x) with x= 1/74, 74=0.02, T9= 0.2, N = 57,944;
(8 1) R; = Ry = 0; 2) R; = Ry = 0.5; 3) R; = 0.8 and R, = 0.2;
4) R; = 1.0 and R, = 0.2; 5) with radiation disregarded; (b)
1) Ry = 0.2, Ry = 0.6; 2) R; = 0.2, R, = 0.8; 3) Ry = 0.2, R,
=1.0; 4) Ry = 1.0, Ry = 0.2; 5) with radiation disregarded.
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TABLE 1. Comparison between Exact Solution and
Approximate Solution (74 = 0.02, 7, = 0.2, N =57.944,

AT, = 20°C)
- AT—AT()
R, R, AT AT = —pm
%

: 0 5,98 5,18 13,4
0,5 0,5 9,60 8,33 12,7
0,2 0.6 8.9 8.57 4.5
0.2 0.8 10,4 11,2 —8,1
0.8 0,2 11,0 8.0 6,9

The resulting equation, which describes the temperature field of a cylindrical layer of a substance with
selective optical characteristics, contains many parameters. Their number could be reduced substantially,
if the "gray" approximation were applicable and functions k(v), n(v) were replaceable by their mean spec-
tral values. It has been shown earlier [2] that such a simplification is permissible for several semitrans-
lucent substances, Letting '
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we have for the "gray" approximation
@ (x) = f(x) — Neyg (m) [Fy(x) - Fy (x)] — Nv3 S 9(y) Gx, y) dy. (10)

y=1
In this case, evidently, the referred temperature field depends on the following parameters: optical thick- .
ness of the inner surface 7, ratio m = 7,/ 7y, radius of the inner surface and radius of the outer surface,
reflectivities Ry and R, of the two surfaces, and parameter N which characterizes the ratio of the two
modes of heat transmission, ‘

Features of the Computation Process. The linear integral equations (7) and (10) can be solved only
by a numerical method, Most worthwhile here is the use of the quadratures method, which reduces the
problem to the solution of a system of linear algebraic equations, Since an unknown value of the sought
function at the boundary x = m appears in the equations explicitly, hence it becomes necessary to use
closed quadrature formulas here. The Markov formula [3] was actually used, When applied to the inte-
gral equations (10), for instance, it yields
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where 'A'j denote the quadrature coefficients, ®5 = cp(yj), Gij =G(x, yj), and points Xx;, yj corre spond to the nodes of
order p in the Markov formula. Considering that p(m) = pp, We obtain instead of (10) the following system

of equations:
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A basic difficulty in solving this system has to do with calculating the elements of the Gijj mafrix. Relations
(8) and (3)-(6) indicate that G(x, y) is a continuous function in x, y on the interval 1, m]. The triple inte-
grals constituting the elements Gjj, however, are in a practical manner evaluated by successive integration
with respect to each of the three variables y, z, w and, therefore, it becomes necessary to repeatedly
evaluate the functions (3)-(6), which at certain values of z, w, y result in improper integrals with respect

to variable z. The integrand functions tend to infinity, because the radical v, = 7,V y?—wiz? in the de-
nominator vanishes at the edges of the integration interval: at z = y/w for all values of y, wandatz=1
when w = y. Taking into account that in an improper integral of the kind
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(here f(t) is a continuous bomided function) the last term becomes arbitrarily small as A decreases, inas-
much as sin™it is continuous, we conclude that such an integral can be calculated within any desirable




accuracy by standard methods, only with the upper limit of integration replaced by an appropriately small
quantity A. In the process of integration with respect to z, for determining the elements of Gjj, we have
replaced the limits y/w and 1 by y/w—A and 1A respectively, whereupon repeated computations with dif-
ferent values of A have established that A = 5.107% ensures the necessary accuracy.

All calculations were made on a model BESM -4 computer, Multiple numerical evaluations of the in-
tegrals, each within an accuracy ensuring an immunity of the final results to cumulative errors, are found
to be uneconomical in terms of machine time, Thus, for determining the temperature profile of a layer
on the basis of 13 points, a solution of Eq, (10) takes about two hours.

Results of the Solution, In Fig. la are shown temperature profiles of a cylindrical layer with various
combinations of reflectivities at the boundaries, The parameter values for these computations were se-
lected so as to yield a temperature drop of 20°C in the absence of any radiation (curve 5). As is to be ex-
pected, the temperature gradient becomes minimum when Ry = R, = 0. As the reflectivities increase (curve
2), the gradients at all points increase too. A comparison between curves 3 and 4 in Fig. 1a indicates how
the temperature profile changes depending on Ry. If R, = const and R, is varied, however, then the tem-
perature profile changes according to curves 1, 2, 3 in Fig. 1b. As can be seen, the temperature profile
acquires an inflection point and, as R, increases, this inflection point becomes more pronounced. The tem-
perature gradients at the "cold" boundary of a layer increase at the same time. It is interesting to com-
pare curves 3 and 4 in Fig. 1b, which correspond to the same pair of R, R, values differently distributed.
It is quite evident that the gradients at the surface increase with increasing reflectivities, This has to do
with a declining role of heat radiation in the vicinity of a boundary whose reflectivity is high (and whose
emissivity is thus low),

For a comparison with the approximate representation of a temperature field by the free function in
Egs. (7)and (10), which was used in the first part of this article, we have tabulated the values of temperature
drops based on the exact solution (AT) and on the approximate solution (AT 1)y as well as the relative error
of the latter., Evidently, the error is most significant when radiation from a surface contributes least fo
the ambient radiation from the medium, The refinement based on a complete solution of the integral equa-
tions is substantial and, therefore, reliable quantitative data concerning the temperature field in the case
of strong radiation can only be obtained by a solution of the problem in rigorous form on the basis of Eq.
(7) or Eq. (10).

The results obtained here may be useful for studying the thermophysical properties of semitranslu-
cent solid substances at high temperatures, when cylindrical specimens with internal heat sources are
often used, as well as for studying the thermal conductivity and the thermal diffusivity of confined liquid
specimens by the hot-wire or by the line-source method. It can be stated here that heat radiation plays
a lesser role in a cylindrical layer than in a plane layer. The decrease in photon conduction becomes
more significant as both the reflectivity of the inner surface and the difference between Ry and R,increases.

NOTATION
Q is the total energy flux through a layer;
p is the thermal conductivity of the substance;
k ; is the absorption coefficient;
is the refractive index;
£ is the emissivity of a boundary surface;
R is the reflectivity of a boundary surface;
AT is the total temperature drop across a layer;
#(r);= Ty T (r);
In(v, T) are the Planck functions;

o} is the Stefan constant;

Fi, Fy are the functions defined in [1];

r,p are the cylindrical coordinates;

X, ¥, W are the dimensionless cylindrical coordinates;
T is the optical thickness;

m= Tg/Ty; 0

Aj
N

are the Kronecker deltas;
are the coefficients in.the Markov quadrature formula;
is the heat transfer parameter (equality (9)).



Subscripts

1 denotes the inner surface;
denotes the outer surface;
denotes the spectral values;
denotes the absence of radiation,
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