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A so lu t ion  to the l i n e a r i z e d  equa t ion  of  r a d i a t i v e - c o n d u c t i v e  hea t  t r a n s m i s s i o n  th rough  
a c y l i n d r i c a l  l a y e r  h a s  been  found by a n u m e r i c a l  m e t h o d .  

In  [1] the au tho r  has  s e t  up and then  a p p r o x i m a t e l y  so lved  i n t eg ra l  equa t ions  d e s c r i b i n g  the s t e a d y -  
s t a t e  f ie ld  of  a s e m i t r a n s l u c e n t  m e d i u m  con ta ined  be tween  coax ia l  c y l i n d e r s .  The  p h y s i c a l  mode l  fo r  th is  
p r o b l e m  w a s  c o n s t r u c t e d  on the  b a s i s  o f  hea t  t r a n s m i s s i o n  by  conduct ion  and r a d i a t i o n ,  t ak ing  into accoun t  
a s e l e c t i v i t y  of  the  op t ica l  c h a r a c t e r i s t i c s  and a m i r r o r  r e f l e c t i o n  of  the r a d i a n t  hea t  a t  the b o u n d a r y  s u r -  

f a c e s .  

T r a n s f o r m a t i o n  of the F t m d a m e n t a l  Equa t ions .  The  c o m m o n l y  p r e v a i l i n g  condi t ion  tha t  ~ (r) << T~ 
l e a d s  to a l i n e a r i z e d  equa t ion  of the  t e m p e r a t u r e  f ie ld:  Eq.  (5) in [1]. We wil l  r e w r i t e  th is  equa t ion  a s  f o l -  

l o w s :  

~(r) = . .Q"L- ln  r 4 - A T  i e.~n~( 0I~ ) [ F : ( r ) : F ~ ( r ) ] d v  
Z, rl )~ " \ OT . r. 

,-o (1) 

4 {}(9) k~n 2 (" OI. ~ G(% r, p) dv dp, 
k OT }r ,  

p = r  I ~ = 0  

w h e r e  

6 (,~, r, O)=  

f~ (z, t) = 

r r,/t P; 

1 
- S dz]at ;  o < r ,  

I z=rt/t 
r ra/t 1 
,[ [3 r 0>r;  

I t=r, z=O  z-~rx/t 
~/2 

({R., exp [ - -  (2v~ - -  v 3 v4)/cos ~] (1 - -  R:, exp [ - -  2 (03 
~ = 0  

I n z h e n e r n o - F i z i c h e s k i i  Z h u r n a l ,  Vol .  25, No. 1, pp.  77-82 ,  Ju ly ,  1973. 

25,  1972. 

0 tilt 
3 [.t t,(z. ,id, 

(2) 

- -  Vx)/COS ~21) - -  R:~ exp [ - -  (v 3 _a v4 _ 2vl)/cos ap] (1 - -  R2~ exp [ - -  2 (v~ 

- -  v3)/cos~O]) } {1 - -  R1,R~v exp [ - -  2 (v~ - -  v3)/cos~]} - 1 -  exp [ - -  (v3 - -  v4)/cos ~01) cos ~k~p d~; (3) 
I) 4 

~/2 
[2(z. t) = ~ (exp [ - - (v  3 -  v4)/cos*l -- exp [ - - (v  3 ' -  v4)/cos*l 

# = 0  

~- R~ {exp [--(v~ + 2 v ~ -  v4)/cos @I ~- exp [ - - (v  3 -:- 2v.2 -:- v4)/cos*] 

- -  exp [ - -  (2v 2 v3 v~)/cos ~1 - -  exp [ - -  (2v~ v 3 

o4)/c~ 4]} {1 /?~, exp ( - -  2vJcos ~)}-: cos ~k~p d~b; (4) 
Z., 4 

D. I .  M e n d e l e e v  A l l - U n i o n  S c i e n t i f i c - R e s e a r c h  Ins t i t u t e  of  M e t r o l o g y ,  L e n i n g r a d .  T r a n s l a t e d  f r o m  
Or ig ina l  a r t i c l e  s u b m i t t e d  Ju ly  

�9 1975 Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. No part o f  this publication may be reproduced, 
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, 
recording or otherwise, without written permission of  the publisher. A copy of  this article is available .from the publisher for $15.00. 

866 



5 

/5  

a 

0 l ~ 8 t 4, 8 x :  

F i g .  1.  T e m p e r a t u r e  p r o f i l e  of  a c y l i n d r i c a l  l a y e r  ~ (x) 
= T I ' T ( x  ) wi th  x = ~ - / r ~ ,  "r 1 = 0.02 ,  ~'2 = 0.2,  N = 57 ,944 ;  
(a) 1) R I = R  2 =  0 ; 2 )  R l = R  2 =  0 .5 ;  3) R l =  0.8 a n d R  2 =  0 .2 ;  
4) R 1 = 1 .0  and  R 2 = 0 .2 ;  5) w i th  r a d i a t i o n  d i s r e g a r d e d ;  (b) 
1) R I =  0.2, R 2= 0.6; 2) R I=  0.2, R 2= 0.8; 3) R I = 0.2, R 2 
= 1.0; 4) R i = 1.0, R 2 = 0.2; 5) with radiation disregarded. 
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v 1 k v d  r i - t 2 z 2 ;  v 2 k u ~ r ~ - t 2 z 2 ;  v z k u r d / i - z 2 ;  v 4 k u ~ / p 2 - t 2 z  2, and  f u n c t i o n s  F i ( r ) ,  F2(r  ) a r e  de f i ned  
by  the  t r i p l e  i n t e g r a l s  in [1]. C h a n g i n g  the  v a r i a b l e s  

1- p . t 
X - -  ; y = - ,  W =  

r l  /'1 r l  

a nd  i n t r o d u c i n g  the  n o t a t i o n  k u r  = T,  k v p  = T ' ,  k v r  1 = r l ,  T2/~-I = m ,  i n s t e a d  of  (1) and  (2) we  f ind 
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TABLE 1. Comparison between Exact  Solution and 
Approximate  Solution ( r  I = 0.02, ~-2 = 0.2, N = 57.944, 
AT 0 = 20~ 

RI 

0 " 
0;5 
0,2 
0,2 
0,8 

R, AT 

O ] 5,98 
0,5 9,60 
0,6 8,96 
0,8 10,4 
0,2 11,0 

AT( 1 ) 

5,18 
8,33 
8,57 

11,2 
8,0 

. AT--AT( 1 ) 

, % 

13,4 
12,7 
4,5 

--8,1 
26,9 

The resul t ing  equation, which desc r ibes  the t empera tu re  field of a cyl indr ical  l aye r  of a substance with 
se lec t ive  optical cha rac t e r i s t i c s ,  contains many p a r a m e t e r s .  The i r  number  could be reduced  substantial ly,  
if  the "gray"  approximation were  applicable and functions k(v) ,  n(v) were  replaceable  b y  their  mean  spec -  
t r a l  va lues .  I t  has been shown ea r l i e r  [2] that such a s implif icat ion is pe rmiss ib le  for  severa l  s e m i t r a n s -  

lucent substances.  Let t ing 

(x) In x 16n~aT~ (9) 
'Qq In r2 =ATe; - - - - = ~ ( x ) ;  = f (x ) ;  N - -  

)~ rl AT o ~ :~k)~ ' 

we have for the .gray ' ,  approximat ion 

f ~(x) = [(x) - -  Ne~(m) [Fl(X ) -].- F.,. (x)] - -  N'~] q~(9) G(x, y) dg. (10) 
y=l 

In this case ,  evidently,  the r e f e r r e d  t empera tu re  field depends on the following p a r a m e t e r s :  optical thick-  
ness  of  the inner surface  r i ,  ra t io  m = r 2 / T  l ,  radius of the inner surface  and radius  of the outer  sur face ,  
re f lec t iv i t ies  P~ and R 2 of the two su r faces ,  and p a r a m e t e r  N which c h a r a c t e r i z e s  the ra t io  of the two 

modes of heat t r ansmiss ion .  

Fea tu res  of the Computation P r o c e s s .  The l inear  integral  equations (7) and (10) can be solved only 
by a numer ica l  method. Most  worthwhile he re  is the use of the quadra tures  method,  which reduces  the 
problem to the solution of a sys tem of l inear  a lgebraic  equations. Since an unknown value of the sought 
function a t  the boundary x = m appears  in the equations explici t ly,  hence it  becomes  n e c e s s a r y  to use 
closed quadrature  formulas  he re .  The Markov formula  [3] was actually used.  When applied to the in te-  

gral  equations (10), for  instance,  it yields 

~ ~(y) G(x, y) dy m - - 1  y__ a . . . .  Aj(pjG~j, 
,) 2 i=t 

g=l  

where A] denote the quadrature  coeff ic ients ,  q~j = ~(yj), Gij = G(x, yj), and points xi, yj co r r e spond  to the nodes of 
o rde r  p in the Marke r  formula .  Considering ttmt ~(m) = ~p, we Obtain instead of (10) the following sys tem 

of equations: 
p 

Z { 6iJ + NEg[Fi (xl) :}- Fo (xi)] ~jp @- ,11,--1 Nz~AjGij } % = [(xi); 
" 2 (11) 

1=I 

i= : I ,  2 . . . . .  p. 

A basic difficulty in solving this system has to do with calculating the elements of the Gij matrix. Relations 
(8) and (3)-(6) indicate that G(x, y) is a continuous function in x, y on the interval [1, m]. The triple inte- 
grals constituting the elements Gij, however, are in a practical manner evaluated by successive integration 
with respect to each of the three variables r z, w and, therefore, it becomes necessary to repeatedly 
evaluate the functions (3)-(6), which at certain values of z, w, y result in improper integrals with respect 
to variable z. The integrand functions tend to infinity, because the radical v 4 = rl~/y2-w2z 2 in the de- 
nominator vanishes at the edges of the integration interval: at z = y/w for all values of y, w and at z = 1 
when w = y. Taking into account  that in an improper  integral  of the kind 

"" i--A 
1 1--; 1 dt [ (t) dt -l-- f (1) arc sin (1 - -  A) j ' t (t) dt f (t) dt + f (1) V 1 - -  t* = ] / ~  2 

V i -  t *  = . V ~  . , .  o 

(here f(t) is a continuous bounded function) the las t  t e rm  becomes  a r b i t r a r i l y  small  as A d e c r e a s e s ,  inas -  
much as  s in- i t  is continuous, we conclude that such an in tegral  can be calculated within any des i rab le  
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accuracy by standard methods, only with the upper limit of integration replaced by an appropriately small 
quantity A. In the process of integration with respect to z, for determining the elements of Gij, we have 
replaced the limits y/w and 1 by y/w-A and I-A respectively, whereupon repeated computations with dif- 

ferent values of A have established that A = 5 �9 10 -3 ensures the necessary accuracy. 

All calculations were made on a model BE SM-4 computer. Multiple numerical evaluations of the in- 
tegrals, each within an accuracy ensuring an immunity of the final results to cumulative errors, are found 
to be uneconomical in terms of machine time. Thus, for determining the temperature profile of a layer 
on the basis of 13 points, a solution of Eq. (i0) takes about two hours. 

Results of the Solution. In Fig. la are shown temperature profiles of a cylindrical layer with various 
combinations of reflectivities at the boundariesl The parameter values for these computations were se- 
lected so as to yield a temperature drop of 20~ in the absence of any radiation (curve 5). As is to be ex- 
pected, the temperature gradient becomes minimum when R i = R 2 = 0. As the reflectivities increase (curve 
2), the gradients at all points increase too. A comparison between curves 3 and 4 in Fig. la indicates how 
the temperature profile changes depending on R I. If R i = const and R 2 is varied, however, then the tem- 
perature profile changes according to curves I, 2, 3 in Fig. lb. As can be seen, the temperature profile 
acquires an inflection point and, as R 2 increases, this inflection point becomes more pronounced. The tem- 
perature gradients at the "cold" boundary of a layer increase at the same time. It is interesting to com- 
pare curves 3 and 4 in Fig. ib, which correspond to the same pair of R i, R 2 values differently distributed. 
It is quite evident that the gradients at the surface increase with increasing refleetivities. This has to do 
with a declining role of heat radiation in the vicinity of a boundary whose reflectivity is high (and whose 

emissivity is thus low). 

For a comparison with the approximate representation of a temperature field by the free function in 
Eqs. (7) and (10),which was used in the firstpartofthis article,we have tabulated the values of temperature 
drops based on the exact solution (AT) and on the approximate solution (AT(i)) as well as the relative error 

of the latter. Evidently, the error is most significant when radiation from a surface contributes least to 
the ambient radiation from the medium. The refinement based on a complete solution of the integral equa- 
tions is substantial and, therefore, reliable quantitative data concerning the temperature field in the case 
of s t rong  rad ia t ion  can only be obtained by a solution of the p rob l em in r igo rous  fo rm on the bas i s  of  Eq. 

(7) o r  Eq. (10). 

The  r e s u l t s  obtained he re  m a y  be useful  for  s tudying the t he rmophys i ca l  p r o p e r t i e s  of s e m i t r a n s l u -  
cent  solid subs tances  a t  high t e m p e r a t u r e s ,  when cyl indr ica l  s p e c i m e n s  with in ternal  hea t  sou rce s  a r e  
often used,  as  well  as  for  s tudying the t he rm a l  conductivi ty and the t h e r m a l  diffusivi ty of  confined liquid 
s p e c i m e n s  by the ho t -w i r e  or  by the l i n e - s o u r c e  method.  I t  can be s ta ted  h e r e  that  heat  rad ia t ion  p lays  
a l e s s e r  ro le  in a cyl indr ica l  l aye r  than in a plane l aye r .  The d e c r e a s e  in photon conduction b e c o m e s  
m o r e  s ignif icant  as  both the r e f l ec t iv i ty  of the inner  su r face  and the d i f fe rence  between R l and R 2 i n c r e a s e s .  

Q 

k 
n 

g 

R 
AT 
~(r);= T I-T (r); 

IB(V, T) 
o 

F I , F2 
r,p 
x , y , w  
T 

m = T 2 / T  i ; 5 

A 3 
N 

NOTATION 

is the total  ene rgy  flux through a l a y e r ;  
is the t h e r m a l  conductivi ty of the subs tance ;  
m the absorp t ion  coeff ic ient ;  
is the r e f r a c t i v e  index; 
m the e m i s s i v i t y  of a boundary  su r f ace ;  
is the r e f l ec t iv i ty  of a boundary su r f ace ;  
~s the total  t e m p e r a t u r e  drop a c r o s s  a l a y e r ;  

a r e  the P lanek  functions;  
is the Stefan constant ;  
a r e  the functions defined in [1]; 
a r e  the cy l indr ica l  coord ina te s ;  
a r e  the d imens ion le s s  cy l indr ica l  coo rd ina t e s ;  
is the opt ical  th ickness ;  
a r e  the K r o n e e k e r  del tas ;  
a r e  the coef f ic ien ts  in the  Markov  quadra tu re  fo rmula ;  
is the hea t  t r a n s f e r  p a r a m e t e r  (equality (9)). 
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S u b s c r i p t s  

denotes the inner surface; 
denotes the outer surface; 
denotes the spectral values; 
denotes the absence of radiation. 
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